LENESIS

Michal Szymaniak
mips@infradepot.com

Genesis

e Zero-dependency storage platform

- Replication
- Goal: reliability and availability
- How: Raft over RocksDBs

- Sharding

 Goal: capacity and throughput
- How: BigTable-style range splitting

- Change notification
* Goal: consistency and integration
- How: Zookeeper-style watches

Genesis

* Google-inspired storage layer

- Critical problems solved once
- Less code — Fewer bugs — Higher reliability
 Re-usable service — Easier maintenance

- Higher layers simpler and focused
- Less complexity — Faster development
- Less specialized expertise — Easier staffing

- Lower layers abstract and disaggregated
- Same API for physical / virtual / cloud storage — Natural data mobility
- Decoupled resource lifetimes — Smooth HW / DC / Cloud operations

Genesis Use Cases

- Infrastructure metadata store
- Distributed filesystem, package management, ...

- Massively shardable NoSQL

- User metadata, event processing, ...

- Alternative implementation of popular APIs
- DynamoDB, BigTable, ...

- Geo-distributed data storage
- Multi-AZ, multi-region, multi-cloud, ...

- Vehicle for physical data migrations
 Zero-downtime moves between clouds, regions, datacenters, ...

// Keys: N-tuples of binary strings, with key[0] determining the shard

// Read: point reads or range scans, optionally with key filtering
ReadResult = { Key, Value, Stat }

Status Read(ReadOptions, Store, Key, ReadResult)

Iterator NewlIterator(ReadOptions, Store)

// Commit (aka MultiOp): atomic multi-key batch of operations
Op = CheckExists | CheckNotFound | CheckvValue | CheckVersion |
SetCounter | IncCounter | DecCounter |
Write | WritewWithCounter | Delete | DeleteRange
Mutation = [Opl, Op2, 0p3, ..]
Status Commit(CommitOptions, Store, Mutation)

// Watch: individual keys or key “patterns” across entire store
Status WatchKey(wWatchOptions, Store, Key, WatchCallback)
Status WatchStore(WatchOptions, Store, KeyFilter, WatchCallback)

// Connect to Genesis
GrpcNetworkEnv env;
Client client(&env, FLAGS_genesis_bootstrap_servers);

// 0Open the store
StoreHandle store;
CHECK_OK(client.OpenStore(“dbl1”, &store));

// Write something

Mutation mutation;

const Key key(“user:alice”, “email”);

mutation.Write(key, “alice@foo.com”);
CHECK_OK(client.Commit(CommitOptions(), store, mutation));

// Read 1t back
std::string email;
CHECK_OK(client.Read(ReadOptions(), store, key, &email));

Logical View
Store dbl
Tablet db1/s1/t1 Tablet db1/s1/t3

Raft

— Consensus protocol

— Simplified Paxos

— Replicates mutation log

Raft Leader
— Elected among voters

— Needs only majority to work Tablet == Shard Replica — g lleEe ClE:
— Voter or Observer — Consistent state
— Added / removed at will — Automatic failover

(“shard re-configuration™)

Logical View: Multiple Shards
SUIGIC I Tablet dbl/s.2//t1/ Tab‘let ‘(‘Jlkb'1'/32/t3

— Old shard s1 split at key “foo”

— New shards own adjacent key ranges
— Separate tablets, Raft state, leaders
— Sharding hidden from clients

Physical View

Server 10.1.1.1 Server 10.2.1.1 Server 10.3.1.1
Genesis :4000 Genesis :4000 Genesis :4000 l
Talzl}eﬁtﬁ @17/31“/& Tablet dbl/sl/t2 Tablet dbl/sl/tB ||

| RocksDB ‘ J RocksDB q ROCK DR
Raft over gRPC
Tablet db2/s1/t1 |

R(;C?SE)B ‘ RocksDB
Colocated Tablet

— Many tablets per server
— Same or different store

Tablet Server

— Owner of disk space
— Platform for tablets
— RPC dispatcher

Tablet

— Owner of RocksDB

— Raft code and buffers
— RPC destination

Raft Leader

— Hot tablet handling all writes
— Commit calls + replication

— Leader flip == traffic switch

Tablet Storage
— “Unloaded” == inaccessible
— Tablet either being created,
moving, or pending deletion

Physical View: More Tablets

Server 10.1.1.1 Server 10.2.1.1 Server 10.3.1.1 Server 10.4.1.1 Server 10.5.1.1
Genesis :4000 Genesis :4000 Genesis :4000 Genesis :4000 Genesis :4000
Tablet dbl/s1/t1 Tablet db1/s1/t2 Tablet db1/s1/t3 Tablet db1/s1/t4 Tablet db1/s1/t5

| RocksDB ‘ | 2 RocksDB Rock=DB RocksDB & | RocksDB ‘

— | Raft over gRPC | —

— More tablets == higher availability + higher read throughput
— Any odd number of voters, plus any number of observers
— Configured separately per shard

Physical View: More Shards

— More shards == more capacity + more throughput

Physical View: More Shards

— More shards == more capacity + more throughput

— Shard split:

1) split each tablet into N >= 2 new ones

Physical View: More Shards

— More shards == more capacity + more throughput

— Shard split:
1) split each tablet into N >= 2 new ones

2) keep 1 new tablet in place, move other(s)

Physical View: More Shards

— More shards == more capacity + more throughput

— Shard split:
1) split each tablet into N >= 2 new ones
2) keep 1 new tablet in place, move other(s)

— New shards replicated across same server pools
(typically, different availability zones)

— Tablets move within each server pool

Physical View: More Stores

db1/s2/t3

IR

db2/s1/t5

-

db3/s1/t5

-

Orange store “db1”;
— 2 shards
— sharded for capacity and throughput

Blue store “db2”:
— 1 shard, 5 tablets
— higher availability than with 3 tablets

Green store “db3”:
— 1 shard, 5 tablets, including 2 observers
— higher read throughput than with 3 tablets

Physical View: More Locations

| Blue store
Cloud1 (VMs) geo-redundant

Cloud2 (HW)

local for reads
in Cloud?2

Red store
only in Cloudl1

Maintenance

- Store
- Create / Delete
Backup / Restore
Update — change store configuration (ACLs, rate limits, ...)

- Shard
- Split / Merge / AddObserver / RemoveObserver
Update — promote observers to voters or vice versa
- SetlLeader — force leader election for traffic rebalancing

- Tablet

- Move — move tablets between servers for disk space rebalancing

- Checkpoint — clone tablet storage for backup or offline processing
Recover — re-create lost tablet from another, in emergency

Performance

- Read Latency
- 128b / 1kb / 16kb / 128kb / 1MB
- 170/174/195/ 217] 594 usec
- Mostly leader RPC time

- Write Latency
- 128b / 1kb / 16kb / 128kb / 1MB
- 882/894 /1148 /2477 | 15429 usec
- Mostly time of replication to quorum

- Throughput
- Scales linearly with shard count
- Reads per shard: up to 600,000 rps / 50 Gbps
- Writes per shard: up to 30,000 rps / storage saturation

