SCoLE: Scalable Cooperative Latency Estimation

Michal Szymaniak

Guillaume Pierre

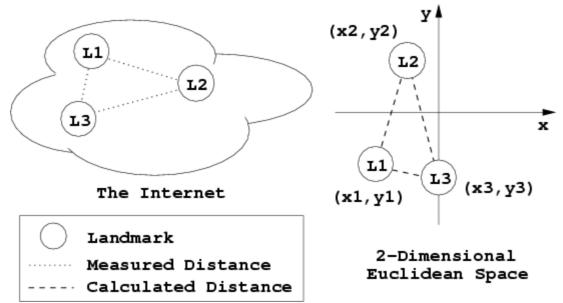
Maarten van Steen

Vrije Universiteit Amsterdam {michal,gpierre,steen}@cs.vu.nl

Problem

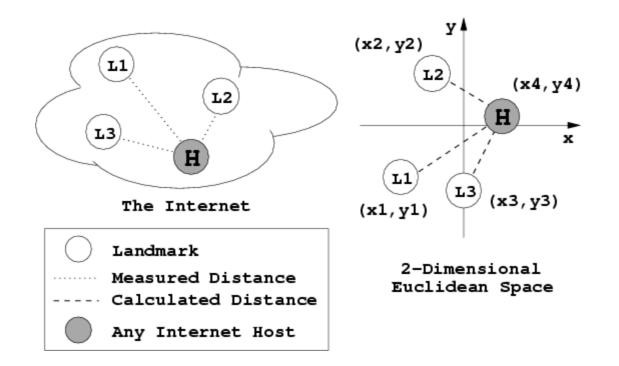
- Context:
 - Large wide-area network
 - e.g.: Internet
 - Distributed system with M nodes
 - M is very large, say O(million)
 - e.g., peer-to-peer file-sharing platform
- How to estimate latencies between arbitrary nodes?
 - Quite easy, as long as M is very small.
 - ...but much harder, once M becomes large

Solution: Network Positioning


- GNP -- Global Network Positioning
 - by T.S. Eugene Ng and Hui Zhang (CMU)
 - Model the Internet as N-dimensional geometric space
 - For each node H, calculate its position P(H) in the space
 - For any 2 nodes A and B:
 - latency(A,B) ~ distance(P(A),P(B))
 - ~ == estimate with
- Main benefit:
 - In a system with M nodes, GNP reduces the number of necessary measurements:
 - all-to-all : O(M²)
 - GNP : O(M)

Talk Agenda

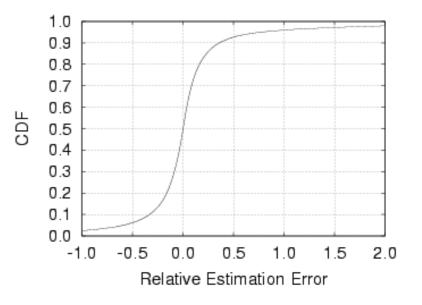
- GNP
 - Details
 - Performance
 - Limitations
- SCoLE
 - Personalized GNP
 - Architecture
 - Deployment
 - Prototype
- Conclusion


GNP: Space Construction

- N-dimensional space defined by N+1 reference nodes:
 - Select N+1 reference nodes, called landmarks: Li, 1 <= i <= N+1
 - Measure the latency between each pair of landmarks
 - Assign landmark positions P(Li) such that:
 - For any i,j: distance(P(Li),P(Lj)) ~ latency(Li,Lj)
 - In practice: minimize the global distance-vs-latency error

GNP: Node Positioning

- Node H positioning:
 - Measure the latencies between H and each landmark Li
 - Assign P(H) such that:
 - For any i: distance(P(H),P(Li)) ~ latency(H,Li)
 - Again, apply global error minimization

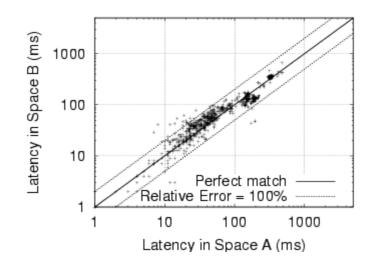


GNP: Cost/Performance

- Cost:
 - N is a small **constant**, we use N=6
 - In terms of measurements performed:
 - Space construction
 - Total for M nodes
 - Single latency estimation : 0
- : **O(1)** (21 for N=6, clique of 7 landmarks)
 - Single node positioning : **O(1)** (7 for N=6, 1 per landmark)
 - : **O(M)** (21 + 7 * M)
 - (once the positioning is done)

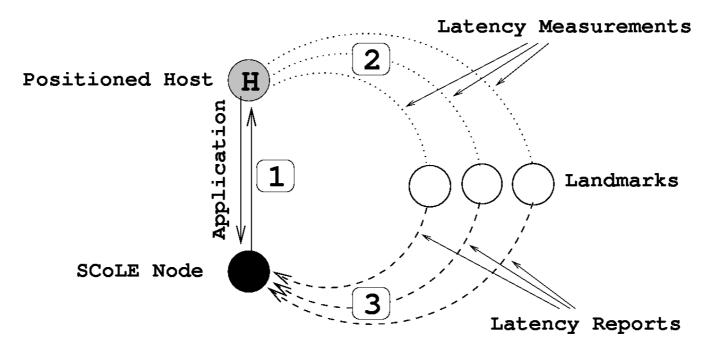
- Performance:
 - For **90%** of latency estimations:

 $^{2}/_{3}$ real < estimated < $^{3}/_{2}$ real



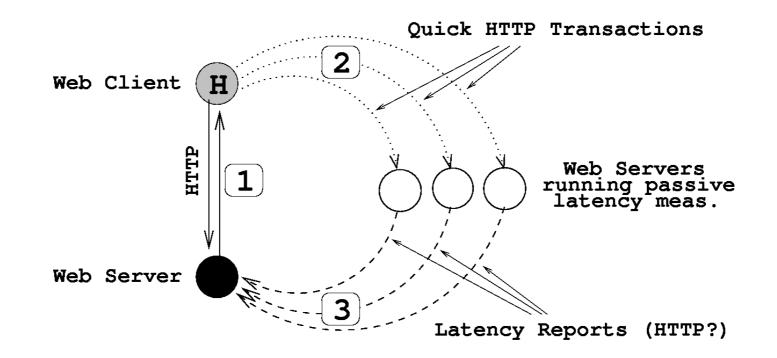
GNP: Limitations

- GNP uses global landmarks
 - All the nodes must agree on which landmarks they use
 - Global negotiation + global knowledge = limited scalability
 - The same landmarks seldom suit all the nodes
 - Lack of flexibility
- Both problems can be removed..
 - ...if only we let nodes choose their landmarks.
 - But how can we calculate global positions then?
 - We can't. But we do not need them, either.
 - Hint: we only care about latencies.

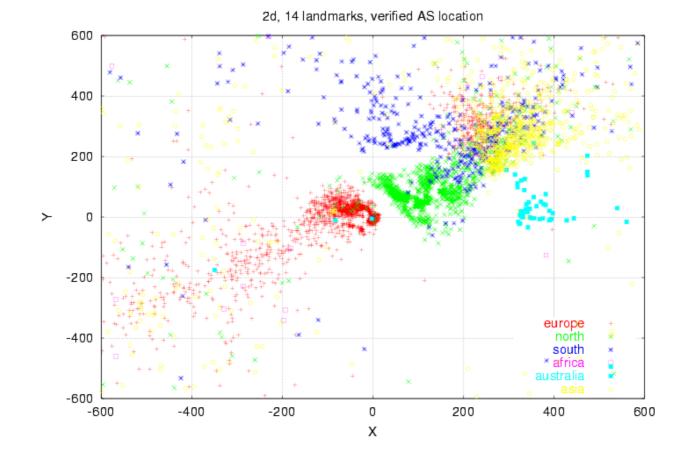

SCoLE: Personalized GNP

- SCoLE Every node runs its own GNP
 - select your landmarks, position any nodes you want
- Properties:
 - no global negotiation nor knowledge
 - estimation adjustable on a per-node basis
 - positions calculated by different nodes may be different
 - but: latency estimates globally correlated

SCoLE: Architecture


• SCoLE Instance:

- Watch out:
 - landmarks must be distributed (important for estimation accuracy)
 - landmarks measure latencies to each other (space construction)


SCoLE: Deployment

- Example system:
 - CDN supporting latency-based redirection of Web clients

SCoLE: Prototype

- Deployed on the VU Website / PlanetLab nodes
- Clients positioned in 2D space:

Conclusion

- Network positioning:
 - Allows for scalable latency estimation
 - Is cheap in terms of number of measurements
 - Offers reasonable accuracy
- Can be personalized:
 - Each node runs its own GNP instance
 - Each instance can be adjusted to the owner's needs
 - Latency estimates are correlated across instances

Questions?